

# **Suriname Electricity Sector Plan**

## **Expansion Plan**

May 2025



# The Expansion Plan provides a 20-year roadmap, contingent on immediate crisis response and thermal fleet rehabilitation measures

Suriname's Expansion Plan ensures a reliable and sustainable electricity sector for 2025–2029, with a 20-year strategic outlook to 2044 with a 5-year action plan

### Short, medium, and long-term roadmap

# Key Elements for the success of the Expansion Plan:

- Immediate plan to face energy crisis
- Plan to rehabilitate EBS's thermal fleet in EPAR to achieve expected availability

### 2025-2026

Immediate plan to face energy crisis



Expansion Plan for ENIC and Rural Districts (Albina, Apoera, Coronie, Moengo, Wageningen, and Pokigron)



## The Expansion Plan considers different energy options and models uncertainties



## **Options:**

| Option/Technology                                | Initial Year |
|--------------------------------------------------|--------------|
| Solar PV                                         | 2025-2026    |
| Wind Turbines                                    | 2027-2028    |
| Battery Energy Storage System                    | 2025         |
| Afobaka Expansion                                | 2033         |
| Reciprocating Internal Combustion Engines (RICE) | 2025         |
| Combustion Turbines                              | 2032         |
| Convert RICE Units to Burn Natural Gas           | 2029         |

## **Uncertainties:**

- **Electricity demand:** We forecasted electricity demand for all systems
- **Fuel prices:** We forecasted prices for diesel, HFO, and natural gas



**Hydrological inflows:** We modeled stochastic inflows capturing seasonality, inflow correlations, and droughts

# For 2025-2044, EPAR's expansion plan adds 1,301MW of new capacity, with US\$1.4 billion needed for generation and transmission



# For 2025-2029, EPAR's expansion plan adds 254MW of new capacity, with US\$313 million needed for generation and transmission



### 254MW of new capacity by 2029:

- Solar: 195MW
- Reciprocating Internal Combustion Engine (RICE): 56MW
- Battery Storage: 3MW

| US\$ million | 2025 | 2026 | 2027  | 2028 | 2029 | Total |
|--------------|------|------|-------|------|------|-------|
| Generation   | 15.8 | 56.3 | 113.0 | 56.3 | 42.3 | 283.7 |
| Transmission | 9.9  | 8.5  | 4.9   | 3.5  | 2.5  | 29.2  |

## US\$425 million of investment is needed in the National Grid over next 5 years

| Values in US\$ million | 2025  | 2026  | 2027   | 2028  | 2029  | Total  |
|------------------------|-------|-------|--------|-------|-------|--------|
| EPAR                   |       |       |        |       |       |        |
| Generation             | 15.80 | 56.30 | 112.95 | 56.30 | 42.30 | 283.65 |
| Transmission           | 9.86  | 8.52  | 4.94   | 3.45  | 2.47  | 29.24  |
| Distribution           | 16.82 | 17.55 | 18.32  | 19.11 | 19.94 | 91.74  |
| Sub-total              | 42.48 | 82.37 | 136.21 | 78.86 | 64.71 | 404.63 |
| ENIC                   |       |       |        |       |       |        |
| Generation             | -     | 6.82  | 5.41   | -     | 5.41  | 17.64  |
| Distribution           | 2.53  | 0.03  | 0.03   | 0.03  | 0.03  | 2.65   |
| Sub-total              | 2.53  | 6.85  | 5.44   | 0.03  | 5.44  | 20.29  |
| Rural Districts        |       |       |        |       |       |        |
| Distribution           | 0.05  | 0.05  | 0.05   | 0.05  | 0.06  | 0.25   |
| Sub-total              | 0.05  | 0.05  | 0.05   | 0.05  | 0.06  | 0.25   |
| Total                  | 45.06 | 89.27 | 141.7  | 78.94 | 70.21 | 425.17 |





### Thinking for a better world.

#### WASHINGTON, DC

1747 Pennsylvania Avenue NW Suite 1200 Washington, DC 20006 USA

#### SYDNEY

Suite 19.01, Level 19 227 Elizabeth Street Sydney NSW 2000 Australia

#### AUCKLAND

Sinclair House 3 Glenside Crescent Auckland 1010 New Zealand

#### WELLINGTON

Level 2, 88 The Terrace PO Box 10-225 Wellington 6011 New Zealand

#### PARIS

3B Rue Taylor Paris 75481 France

### BOGOTÁ

Calle 81 #11-08 Piso 5, Oficina 5-121 Bogotá Colombia

# **Appendix slides**



## Levelized cost of electricity comparison

| Technology      | Capacity<br>(MW) | Fuel               | Fuel<br>(US\$/MWh) | Non-Fuel<br>O&M<br>(US\$/MWh) | Fuel+Non-<br>Fuel O&M<br>(US\$/MWh) | Capital<br>(US\$/MWh) | Total<br>(US\$/MWh) |
|-----------------|------------------|--------------------|--------------------|-------------------------------|-------------------------------------|-----------------------|---------------------|
| Combined Cicle  | 33.2             | Natural Gas (High) | 103.81             | 6.68                          | 110.49                              | 22.67                 | 133.16              |
| Combined Cicle  | 33.2             | LNG                | 183.6              | 6.68                          | 190.28                              | 22.67                 | 212.95              |
| Hydro (Tapajai) | 335              | -                  | 0                  | 8.37                          | 8.37                                | 125.56                | 133.93              |
| RICE (HFO)      | 17               | HFO (High)         | 236.45             | 12.96                         | 249.41                              | 29.11                 | 278.52              |
| RICE            | 17               | Natural Gas (High) | 113.76             | 12.96                         | 126.72                              | 29.11                 | 155.83              |
| RICE            | 17               | LNG                | 201.6              | 12.96                         | 214.56                              | 29.11                 | 243.67              |
| Solar PV (1164) | 15               | -                  | 0                  | 9.51                          | 9.51                                | 91.64                 | 101.15              |
| Solar PV (1321) | 15               | _                  | 0                  | 9.51                          | 9.51                                | 104                   | 113.51              |
| Solar PV (2000) | 15               | -                  | 0                  | 9.51                          | 9.51                                | 157.46                | 166.97              |
| Solar PV (3420) | 15               | _                  | 0                  | 9.51                          | 9.51                                | 269.26                | 278.77              |
| Combined Cicle  | 33.2             | Natural Gas (Low)  | 40.73              | 6.68                          | 47.41                               | 22.67                 | 70.08               |
| RICE (HFO)      | 17               | HFO (Low)          | 123.2              | 12.96                         | 136.16                              | 29.11                 | 165.27              |
| RICE            | 17               | Natural Gas (Low)  | 44.64              | 12.96                         | 57.6                                | 29.11                 | 86.71               |
| Biomass         | 2.5              | Rice Husk          | 39                 | 14.11                         | 53.11                               | 81.51                 | 134.62              |



## CapEx and OpEx for emergency plan

| Cost Component                    | 2025 (US\$ million) | 2026 (US\$ million) |
|-----------------------------------|---------------------|---------------------|
| Capacity (MW)                     | 55                  | 25                  |
| Duration (months)                 | 12                  | 6                   |
| Capacity Factor                   | 90.0%               | 90.0%               |
| Energy Produced (MWh)             | 427,680             | 97,200              |
| O&M (\$/MWh)                      | 15                  | 15                  |
| Lease                             | \$12.60             | \$4.50              |
| Mobilization/Demobilization       | \$6.00              | \$6.00              |
| Fuel                              | \$42.44             | \$9.63              |
| Non-Fuel O&M                      | \$6.42              | \$1.46              |
| Total Estimated Cost              | \$67.45             | \$21.58             |
| Levelized Cost (\$/MWh)           | \$157.71            | \$222.05            |
| Lease (\$ million/day)            | \$0.04              | \$0.03              |
| Specific Fuel Consumption (g/kWh) | 210                 | 210                 |
| Fuel Consumption (tons/day)       | 205                 | 93                  |
| Fuel Price (\$/ton)               | 575                 | 575                 |

| Cost Component (US\$ million) | 2025    | 2026    |
|-------------------------------|---------|---------|
| CapEx                         | \$9.30  | \$19.80 |
| ОрЕх                          | \$24.43 | \$35.51 |
| Total                         | \$33.73 | \$55.31 |



## **Rehabilitation CapEx of RICE units – DPP1**

| Genset # | Туре              | Rehabilitation Project                                       | t Lead time  | Туре                                                          | Estimated budget<br>(US\$) |
|----------|-------------------|--------------------------------------------------------------|--------------|---------------------------------------------------------------|----------------------------|
| Unit 16  | MAN B&W 18V 32/40 | Replace existing cooling radiators                           | 8-12 months  | Expected increase in capacity in dry season by approx. 0.5MW  | \$285,000                  |
|          |                   | Upgrade safety and<br>control system                         | 10-14 months | Increase reliability and availability                         | \$210,000                  |
| Unit 17  | MAN B&W 18V 32/40 | Replace existing cooling radiators                           | 8-12 months  | Expected increase in capacity in dry season by approx. 0.5MW  | \$285,000                  |
| Unit 18  | MAN B&W 18V 32/40 | Replace existing cooling radiators                           | 8-12 months  | Expected increase in capacity in dry season by approx. 0.5MW  | \$285,000                  |
| Unit 19  | MAN B&W 18V 32/40 | Upgrade safety and<br>control system                         | 10-14 months | Increase reliability and availability                         | \$210,000                  |
| Unit 20  | MAN B&W 18V 32/40 | Replace existing cooling radiators                           | 8-12 months  | Expected increase in capacity in dry season by approx. 0.5 MW | \$180,000                  |
|          |                   | Upgrade safety and<br>control system                         | 10-14 months | Increase reliability and availability                         | \$210,000                  |
|          | Common system     | Upgrade balance of<br>plant control and<br>monitoring system | 6-8 months   | Increase reliability and availability                         | \$800,000                  |
|          |                   |                                                              |              | Subtotal DPP1:                                                | \$2,465,000                |



## **Rehabilitation CapEx of RICE units – DPP2**

**ADVISORS** 

| Genset # | Ту            | pe Rehabilitation Project                                                         | Lead time         | Туре                                                       | Estimated budget (US\$) |
|----------|---------------|-----------------------------------------------------------------------------------|-------------------|------------------------------------------------------------|-------------------------|
| DE01     | MAN 48/60 TS  | Replace existing cooling radiator packs (LT)                                      | 12-14 months      | Expected increase in capacity in dry season by approx. 1MW | \$985,000               |
|          |               | Upgrade safety and control system (electronic spares/operating panels)            | 8-12 months       | Increase reliability and availability                      | \$120,000               |
| DE02     | MAN 48/60 TS  | Replace existing cooling radiator packs (LT)                                      | 12-14 months      | Expected increase in capacity in dry season by approx. 1MW | \$985,000               |
|          |               | Upgrade safety and control<br>system (electronic<br>spares/operating panels)      | 8-12 months       | Increase reliability and availability                      | \$120,000               |
| DE03     | MAN 48/60 TS  | Replace existing cooling radiator packs (LT)                                      | 12-14 months      | Expected increase in capacity in dry season by approx. 1MW | \$985,000               |
|          |               | Upgrade safety and control system (Speed governor and operating panels)           | 8-12 months       | Increase reliability and availability                      | \$245,000               |
| DE04     | MAN 48/60 TS  | Replace existing cooling<br>radiator packs (LT)                                   | 12-14 months      | Expected increase in capacity in dry season by approx. 1MW | \$985,000               |
|          |               | Upgrade safety and control system (speed governor and operating panels)           | 8-12 months       | Increase reliability and availability                      | \$245,000               |
|          | Common system | Upgrade balance of plant<br>control and monitoring<br>system (DCS/cyber security) | 10-14 months      | Increase reliability and availability                      | \$750,000               |
|          | Common system | Upgrade balance of plant<br>steam system (exhaust boile<br>overhaul/replace)      | 12-18 months<br>r | Increase reliability and availability                      | \$1,500,000             |
|          |               |                                                                                   |                   | Sub-Total DPP2:                                            | \$6,920,000             |
|          |               |                                                                                   |                   | Total DPP1 + DPP2:                                         | \$9,385,000             |